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Single-walled carbon nanotubes (SWNTs) have an array of
extraordinary mechanical, thermal, and electrical properties, making
them extremely desirable for a wide range of potential applications,
including polymer nanocompositésiowever, one impediment for
their use in such applications is their affinity for one another, making
it difficult to disperse them as individual tub&4.Two routes for b)
achieving SWNT dispersion have been suggested. The first is
covalent functionalization of SWNT%? However, such covalent
approaches have been shown to disrupt theetworks of the
SWNT, leading to possible losses in their mechanical and electrical
propertiest The second strategy is the use of polymers or surfactants C)
in a solvent to assist in the dispersion of SWNT% Although it
has been shown that this results in an improved dispersion, the
mechanism has not been unambiguously determined. In the caseFigure 1. Schematic representations of the mechanisms by which surfac-
of surfactants, it has been previously postulated that the SWNTs tants help disperse SWNTs. (a) SWNT encapsulated in a cylindrical
form the core of cylindrical micgllgs of surfactants (Fig_uresl%ﬂ Z‘érsfgrc‘;ﬁgtnrgf:ﬂ?f;:tgm: rﬁg?essuslggg’nn !?ﬁ'%g@g%gﬁ?@g?&%n
or are coated by adsorbed hemimicellar surfactants (Figur8-1b). o surfactant molecules on a SWNT.
Hemimicellar adsorption of surfactants on the high-curvature
surfaces of SWNTs is sterically and energetically unfavorable as 10" 1o
suggested by Resasco etl@land not considered in this com- 01wtk $os 025wt % SDS
munication. We present structural data that refute the formation of
cylindrical micelles in aqueous dispersions of sodium dodecyl
sulfate (SDS)ySWNT and suggest that structureless random
adsorption with no preferential arrangement of the head and tail of
the surfactants is responsible for the stabilization of the dispersions
(Figure 1c).

We examine SWNTSs prepared by the high-pressure CO process
(HIPCO)2 and dispersed in f» with sodium dodecyl sulfate
(SDS). The dispersion was characterized by-tiNs absorption
spectroscopy and the arrangement of the surfactant molecules by
small-angle neutron scattering (SANS, performed at NIST, Gaith- 10°
ersburg, MD). For all samples, the W\is spectra exhibited the
sharp van Hove transitions anticipated from individualized nano-
tubes. The SWNT concentration increased with SDS amount, up
to 1 wt % SDS where it is 25 mg/t2 From UV—vis spectra we Figure 2. Coherent SANS intensities from,D solutions of 0.1, 0.25,
calculate that the SWNT concentrations are 7, 9, and 12 mg/L for 9:5. and 1 wt % SDS with (blue squares) and without (red diamonds)
the 0.1, 0.25, and 0.5 wt % SDS dispersions, respectively. SWNTs at 25°C.

SANS exploits the large difference in scattering length between  Fqr the 0.5 and 1 wt % SDS samples, the scattering from the
SDS and RO. The scattering length densities for SDS, SWNT,  spherical micelles is essentially unaffected both qualitatively and
and DO are 4.78x 1077, 7.50 x 1075 and 6.37x 10¢ A2, quantitatively and indicates little perturbation to the spherical
respectively. The SANS data for samples with 0.1, 0.25, 0.5, and mijcelles of SDS by the SWNTs. The SANS data were fit to a
1 wt % SDS with and without nanotubes are shown in Figure 2. monodisperse micellar model with the interparticle structure based
Aside from differences in the low-scattering ¢ < 0.03 A™%; q = on the PercusYevick (PY) closure for hard spherésand the
4nlA sin(©/2), 4 is the wavelength and is the scattering angle),  structural parameters are summarized in Table 1. The data suggest
the data for the 0.1, 0.5, and 1 wt % samples are virtually identical minimal perturbation of the spherical micelle structure.
with and without the nanotubes. The upturn in scatteringyfer The 0.1 wt % SDS solution is below the critical micelle
0.03 A~1in the SWNT dispersions is attributed to the dispersed concentration (cmev 0.2 wt %) and the SANS data, within the
nanotubes (Supporting Information). The contribution of this resolution of the intensity scale, demonstrate the absence of a
scattering to the intermediatpbehavior is insignificant €102 structured material. The dispersion of SWNTFs7(mg/L) results
cm L for g > 0.03 A1) and not considered further in this report.  in no structural features in the intermediateange that would be
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Table 1. Percus—Yevick Model Fit Results of the SANS Data intermediateq signatures associated with cylindrical micelles for
sample Rn (A Rus (A the 0.5 and 1 wt % SDS dispersions, and finally the inability of
0.5 Wt % SDS 18 57 any combination of cylindrical and s_pherlgal micelles to account
0.5 Wt % SDS+ SWNTSs 17 59 for the data of the 0.25 wt % SDS dispersion. On the other hand,
1wt % SDS 17 57 a simple rescaling to decrease the number of spherical micelles
1wt % SDS+ SWNTs 19 53 and increase unimer (or disordered) fraction leads to an adequate

fitting of the intermediatey data for the 0.25 wt % SWNT
dispersion. Additionally, the difficulty of forming stable hemi-
micelles on the high-curvature nanotube surfaces has been previ-

aMicelle radius.P Hard sphere (interaction) radius.

1
R 10 —E‘gig{?}ﬁcaimicenes oysly o_utlinedl.0 These observati_ons strongly suggest that the
"_E 10° [ +gph,n-ca|moe..es1 dispersion of SWNTs by SDS is due to the.for.njatlon of a
8 — Cylindrical Micelles structureless, adsorbed layer of surfactant on the individual SWNTs
£107 (Figure 1c).
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embedded nanotube) and spherical ealeell micelles at a concentration ~ NO. DMR-9986442.
of 0.25 wt % SDS in DO. For both cases the calculations assume no . . . . .
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